- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abraham, Clay (1)
-
Benner, Steven A (1)
-
Brumme, Christian (1)
-
Kim, Myong-Jung (1)
-
Li, Yubing (1)
-
Marliere, Philippe (1)
-
Shaw, Ryan (1)
-
Shaw, Ryan W (1)
-
Song, Le (1)
-
Suslov, Oleg (1)
-
Wan, Shuo (1)
-
Xuan, Xiangchun (1)
-
Yaren, Ozlem (1)
-
Yu, Liandong (1)
-
Zhang, Cheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
: One horizon in synthetic biology seeks alternative forms of DNA that store, transcribe, and support the evolution of biological information. Here, hydrogen bond donor and acceptor groups are rearranged within a Watson−Crick geometry to get 12 nucleotides that form 6 independently replicating pairs. Such artificially expanded genetic information systems (AEGIS) support Darwinian evolution in vitro. To move AEGIS into living cells, metabolic pathways are next required to make AEGIS triphosphates economically from their nucleosides, eliminating the need to feed these expensive compounds in growth media. We report that “polyphosphate kinases” can be recruited for such pathways, working with natural diphosphate kinases and engineered nucleoside kinases. This pathway in vitro makes AEGIS triphosphates, including third-generation triphosphates having improved ability to survive in living bacterial cells. In α32P-labeled forms, produced here for the first time, they were used to study DNA polymerases, finding cases where third-generation AEGIS triphosphates perform better with natural enzymes than second-generation AEGIS triphosphates.more » « less
-
Song, Le; Yu, Liandong; Brumme, Christian; Shaw, Ryan; Zhang, Cheng; Xuan, Xiangchun (, ELECTROPHORESIS)Abstract Instability occurs in the electrokinetic flow of fluids with conductivity and/or permittivity gradients if the applied electric field is beyond a critical value. Understanding such an electrokinetic instability is significant for both improved transport (via the suppressed instability) and enhanced mixing (via the promoted instability) of liquid samples in microfluidic applications. This work presents the first study of Joule heating effects on electrokinetic microchannel flows with conductivity gradients using a combined experimental and numerical method. The experimentally observed flow patterns and measured critical electric fields under Joule heating effects to different extents are reasonably predicted by a depth‐averaged numerical model. It is found that Joule heating increases the critical electric field for the onset of electrokinetic instability because the induced fluid temperature rise and in turn the fluid property change (primarily the decreased permittivity) lead to a smaller electric Rayleigh number.more » « less
An official website of the United States government
